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PREFACE

In October 1992, a group of interested NRL researchers formed a working
group to examine the questions and issues associated with the field of neural
networks, examining both fundamental and applications aspects of this
popular field. A number of presentations and round table discussions were
held. Some external speakers were invited to augment the information
examined. This exercise was both educational and broadening with respect to
the utility and applicability of neural networks. An improved picture with
respect to future aspects of neural networks was obtained and shared by the
group. This document gives a number of the approaches examined by this
working group during the course of these discussions.
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NOTATION

ai the i-th value of the input into a network; one subscript indicates that
no classification is evident for the value - this element belongs to a
vector

aj, a value for "input" data corresponding to the j-th component of pattern

A a variable coefficient used in several different types of problems

A the matrix of elements aj,

At transpose of the matrix A

AA change in the parameters a1 in a least squares iteration

bjp the j,p.-th component resulting from the operation of the weight matrix
on the input data

b(n)i the value of big as it appears in the n-th layer of a multi-layer network

B a variable coefficient used in several different types of problems

C a variable coefficient used in several different types of problems

dij derivative of a function at location i with respect to parameter j

D the value of a polynomial function in two variables defined in the text

D the matrix of first derivatives

Dt the transpose of matrix D

AZ matrix containing the difference between calculated and observed values,

Zi° - zi€

E the sum of the squares of the differences between measured (or desired)
and calculated values of the output of a network; using the LMS
approach, E = -(l/2)Xji(siP- -id)
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NOTATION

Z[ ] the average over a suitable time interval of the enclosed quantity [ ]

fo is the nonlinear function transforming the product of the linear
transformations; this is often called the "activation function" or
"squashing function." The function which is frequently used is

f(x) = 1/(l+e-ax)

where a is a variable. The "hard limit" of this function is a step
function, which is used *or information of a "yes-no" nature. It may also
be a "radial basis function" which selects a specific range of values.

fij the weighted value of • corrected output voltages for pixel located at
position i-j in a focal plane array; fij = (yi4l.j + yi-ij. + yij+l + Yi.j-1)/4

f the weighted value of the corrected output voltages for an unspecified
pixel in a focal plane array (the subscripts ij have been omitted for
simplicity)

J(aj,a2,...an,xli,x2i,...xmi) a function of n parameters and m independent

variables corresponding to the i-th measure of this function

Fi designation of the i-th layer in a network

g(xlk) a conditional density function chosen to represent the statistical values

of a sequence in the variable x, for class k

Gij the gain of a pixel at location i-j in a focal plane array

Gn value of the n-th iteration for the gain in a focal plane array (the

subscripts ij are omitted for simplicity of notation)

G(x,y)Gabor function of variables x and y

H the matrix of second derivatives of a function: the Hessian matrix

5£j(x) the j-th Hermite polynomial in variable x

K the number of clusters appearing in the Traveling Salesman Problem
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NOTATION

kT thermal energy: Boltzmann constant times the temperature

N the number of patterns appearing in the Traveling Salesman Problem

Oij an offset correction applied to the voltage of pixel located at position i-j
in a focal plane array

Pi() probability for the occurrence of the contents inside 0 for the i-th

example in question

p,(zli)the probability density function for variable z belonging to class i

ri center of mass of an image having a vector of intensities at row (or

column) i, defined as ri = MJPij where pj is the intensity of element j in
the row (or column), suitably normalized

S the value of a polynomial function in one variable as defined in the text

s(n)Oi the value of sip as it appears in the n-th layer of a multi-layer network

si~() the i-th neural value in layer n; it does not correspond to any particular
class, hence only one subscript is required

sip the value of a "neuron" in a given layer after the activation function has
been applied to the output of a previous layer; it is equivalent to f(bip)

T the value of a polynomial function in three variables defined in the text

Vi voltage at a particular position i in a circuit

Vpi (1) a value of 1 or 0 in the Traveling Salesman Problem, representing a
route between locations p and i if it is 1;

(2) a voltage between points i and p between two positions on a bridge
(for cellular network example)

wij a weight connecting the j-th input element to the i-th node (or
"neuron") in the next layer of a network

w(n)ij the value of wij as it appears in the n-th layer of a multi-layer network
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NOTATION

AWmk a change in the weight for element m in class k

W the matrix of elements wij

Wk the value of the matrix W after the k-th iteration

x a variable used for a number of purposes, defined in the immediate area
under discussion

xij(4>ij) the voltage from pixel i-j in a focal plane array which is exposed to

a flux 0 ij falling on that location

y the value of a variable or function, described in the immediate text

y corrected output voltage from an unspecified pixel in a focal plane array

Yij corrected output voltage from pixel at location i-j of a focal plane ariay

ziC calculated value of a function corresponding to the i-th observed value
of that function

zio i-th observed value of a set of data

GREEK SYMBOLS

a an adjustable parameter, used in a number of algorithmic approaches to
adjust the rate of convergence of network values

bik the Kronecker delta, = 1 if i :-- k, and = 0 otherwise

Akpt a mathematical relationship simplifying the notation for the

relationship involving back propagation; Akp = (Skg - 4p) f(bkl)

a variable coefficient, typically empirically determined, used for various

purposes (such as adjust rate of convergence of a given procedure) as

defined in the immediate text

'1 an adjustable parameter altering the rate of convergence, used for a

variety of networks and convergence approaches

* the angle between two vectors in n-dimensional space
x



NOTATION

O used for an angle, specified in immediate text

0i the "offset," a constant value added to the output of layer i before
applying the "activation function"

Wo angular frequency

(x symbol for an n-dimensional space for variables x

the matrix of elements C j;,

i experimental data (or data to be emulated by a network) for point i
belonging to class g±; alternatively, it is a "desired" value which a network
is asked to "fit."

xi



NEURAL NETWORKS: AN NRL PERSPECTIVE

1. INTRODUCTION

Heard from frustrated practitioners:
Neural networks are the second-best way
to solve any problem1 .

Computation and/or information processing with neural networks has
been of interest for many years in association with the mechanisms involving
memory and adaptation in biological systems. Examination of biological
systems can provide insight and inspiration for new approaches to solving
mathematical problems. The field of neural networks has been inspired
through this approach, along with observations about mathematical properties
which have proven sufficiently intriguing to attract considerable attention.
Initial research began in the 1940's in which computers inspired by brain-like
architectures were discussed. Such researchers included, among others, John
von Neumann, who wrote several books on the subject. Brief histories of
neurocomputing involving many notable accomplishments by early pioneers
are available in a number of texts2 .

The basic concept behind neural networks involves processing at a local
center (or node) and interconnections to other local centers through which
information is shared and further processing can take place. The perceptron
was perhaps the first "neurocomputer" conceived and built in the late 1950's
(Frank Rosenblatt, 1957); it is based on linearly separable criteria for
classification (this is discussed in the text). An electromechanical system was
actually built to recognize characters using these principles. Restrictions to
problems involving linear separability limited the utility and applicability of
this construct. By the mid-1960's interest in neurocomputing began to wane.

1 There are, in fact, a number of examples where the use of neural networks
have been shown to be superior to the conventional techniques which have been
applied to problems.

2 See, for example, Neurocomputing, R. Hecht-Nielsen, Addison-Wesley
Publishing Co., NY (1990). NRL Library QA 76.5 .H4442 (1990).

Manuscript approved July 30, 1993.



INTRODUCTION

Two notable events revived interest in the field. First, Hopfield 3

published an article in which he described a relatively simple mathematical
algorithm in which the input/output relationship associated with a
mathematical data set appeared to iterate towards a local minimum; this
could be used to "recognize" the pattern associated with the input data.

Second, the algorithm for back propagation 4 set the stage for optimization in a
wide variety of networks. The concept of "learning" by networks became a
topic of considerable interest. This development occurred at a time of rapid
increase in computational capabilities with decreased cost, and when
conventional approaches for computation-intensive problems such as machine
learning were approaching roadblocks. The ease of designing new algorithms
and executing them on increasingly powerful personal computers has attracted
a large number of practitioners. A great number of investigators introduced
variations on the theme, and an explosion of technical publications followed.

A number of research programs existing at the time when neural
networks became popular found it beneficial to "relabel" ongoing work with
titles involving "neural network." With increased sponsor interest in the field,
the attraction of these existing programs accelerated still further the
appearance of rapid growth in the field. International Conferences on Neural
Networks attracted hundreds of papers annually. Great interest peaked in the
late 1980's, and there is currently a more thoughtful process of sifting and
assessing the impact and future opportunities offered by the techniques
introduced by this field.

The algorithms which have developed are useful in problems involving
signal and image processing as well as detection, classification, and
combinatorial problems. These techniques appear to have been introduced
into a large number of applications. In a number of cases they appear to offer
the most convenient formulation for specific problems. In other cases, even
though :hey have been shown to give reasonable solutions to many problems;

3 Hopfield, J., Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of Sciences
79, 2554-2558 (1982).

4 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal
representations by error propagation, in D. E. Rumelhart and J. L. McClelland (eds),
Parallel Distributed Processing, Volume 1, MIT Press (1986).
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INTRODUCTION

alternative approaches to some problem have proven superior. A large
number of studies have pointed out the performance of networks for specific
applications without comparing them with competitive algorithms. The
assessment of the true advantages of these methods continues and is a subject
of considerable interest.

Even through the performance of neural networks may not surpass that
of standard linear or nonlinear signal processing methods, neural networks
offer some potentially valuable advantages that make them important in
many application areas. Two potential advantages include:

a) Reduced time and effort in deriving complex algorithms and writing
code. In some cases standard approaches do not even exist or would
require special expertise or break-through concepts. Readily available
neural network algorithms properly applied offer an immediate and
cost-effective alternative.

b) Reduced d-gital processor size from cubic feet to wafer-scale or micro-
chip sizes operating at very low power, and at the same time increasing
the processing power by several orders of magnitude. In essence, new
digital processors on a single wafer could perform with processing power
greater than that of a larger system such as a CRAY or the Connection
Machine.

A number of disadvantages should be kept in mind regarding neural
networks. These include basic problems such as convergence and training
efficiency. In addition, simply because a problem may be approached by using
a neural network does not mean that the neural network is the best approach
to implement. Some experience with the efficiency of problems may help in
the choice of algorithmic approach. Generally, except for problems in which
considerable complexity is involved, if the fundamental relationships for a
problem can be expressed, it is often better to use these fundamental
relationships rather than resort to a neural network.

3



2. BACKGROUND
The fundamental behavior of neural networks was a subject of interest

for a number of years before the excitement of the early 1980's5. The linear
perceptron, for example, provides a useful linear transformation of a vector
array comparable to a simple matrix multiplication. The fundamental
relationship between "input" and "output" elements of a linear perceptron is
given by6

i - jwijaj1 (2-1)

where ajA and ý i1, are the j-th input and i-th desired outu "voltages" (or
values) of a network representing pattern g.. The problem as frequently stated
is to determine the elements wij to satisfy this equation. This represents
simple matrix multiplication:

ý =f WA (2-2)

where the upper case bold symbols without
subscripts indicate matrices. The input and
output matrices A and ý are known, and the F2
matrix W is to be determined. In the custom of
the literature on neural networks, an
illustration of this operation is given in the
accompanying figure. The input stage is
labelled as F 1, and the output stage is labelled
F 2. Information thus "travels upward" as the F1
mathematical operations take place. The
matrix A is generally not square; hence, the
inverse of A does not generally exist. However,
an apparently straightforward way to solve this is by forming the
pseudoinverse of the matrix A:

5 J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Computation, Addison-Wesley Publishing Company, Redwood City, CA (1991). NRL
Library QA 76.5 .H475 1991.

6 Y. Pao, Adaptive Pattern Recognition and Neural Networks, Addison
Wesley Publishing Company, Inc., New York, NY (1989). NRL Library TK 7882 .P3

4



BACKGROUND

W = ý A' (AA')- 1  (2-3)

where At is the transpose of A. In some cases the pseudoinverse may not exist,
whereupon this process will not give an answer. In general, since A does not
have an inverse, the value of W A as represented by equation (2-3) is
A(AAT)-A * C, and the solution obtained by this method does not lead to an

equality. Further, real systems such as biological systems manage to find
extrema and determine relationships between stimulus and response without
inverting matrices, but rather by adjusting certain parameters to find such
extrema. This inherent "feel" for finding correct weighting interrelationships
has been one factor in stimulating the current interest in neural networks.

Attempts to converge on values of W iteratively may be illustrated with
one approach known as the "Widrow-Hoff procedure" (sometimes referred to as
"Hebbian learning") in which successive values of W (the k-th iteration is
indicated as W k) are obtained by updating the matrix of weights W k.1 = Wk +

AW

where AW = a(C - WkA)A (2-4)

and a is a small number chosen to allow convergence. This procedure in effect
adds an increasing amount of the "training vectors" in the columns of A with
increased weight to those rows of W k which most closely resemble the column
vectors in A. In reality, for many cases of interest, the iterations do not
converge. Many alternatives have been reported for such learning methods.
Alternatives include constantly renormalizing the vectors in W. Depending on
the type of network, the "learning rules" vary considerably7 .

Some attempts to improve the linear perceptron introduce "multiple
layers" in which the matrix W is represented as a product of two matrices.
However, since the product of two matrices is simply another matrix, nothing
new was added to the perceptron as long as linear transformations were
involved.

7 J. M. Surada, Introduction to Artificial Neural Systems, West Publishing Co.,
NY (1992). ISBN 0-314-93391-3

5



BACKGROUND

Adjustment of the "weights" in the transformation matrix W lead to
relationships between known values of A and ý. However, it was pointed out
that the linear perceptron had serious fundamental limitations. It could not
even solve (i.e. find a suitable matrix W) the XOR problem, in which the logical
input/output relationship is:

A= (1 1 0 01 1 0)A- 1(0 1 0 f o0)

Attempting to obtain a matrix W which agrees with A and ý is equivalent to
finding a linear discriminant (a straight line separating two classes) in two-
dimensional space. The two classes "1" and "0" given by these 4 points in two-
dimensions: (l,l)--0, (1,0)-4 1, (0,1)-4 1, and (0,0)-- 0. They are not separated
by a plane, hence there is no linear discriminant for solving this problem.
Interest in the linear perceptron faded until subsequent nonlinear
transformations and the use of multiple layers were shown to overcome this
problem. This is one of the reasons why the current neural network models are
of interest today.

2.1. NEURAL NETWORKS: BEYOND THE PERCEPTRON

A great many variations of neural networks have been introduced in the

literature and examined 8 . Several networks illustrating a number of
fundamental principals will be discussed here.

2.1.1. Single Layer Networks

A fundamental difference among the many attempts to use the linear
perceptron and the current interest in neural networks may be illustrated by
simply introducing a nonlinear transformation between successive operations
in the perceptron model. This nonlinear transformation, as it turns out,
provides a great deal of flexibility in developing the relationships between A

and C. With this alternative approach, the XOR problem is readily solved. In
reality, the use of nonlinear transformations combined with the use of "hidden
layers" (to be discussed subsequently) provides a highly flexible function in n-

8 See, for example, DARPA Neural Network Study, AFCEA International Press,
Fairfax, VA, October 1987 - February 1988. NRL Library: UG 479 .D37 (1988).
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BACKGROUND

dimensional space. One of the challenges which remains is to find efficient
algorithms for convergence in order to obtain the desired relationships.

The single layered network may be described briefly. Let aj, be an initial
set of patterns (j represents the j-th element of the gI-th pattern), and let wij be
an initial choice of weights chosen at random or according to some other
rationale which introduces some relationship between the "input" and
"output." Calculate the actual relationship between "input" and "output" in
the same manner as for a linear perceptron:

big- = Xwij aj&. (2-5)

Introduce the "activation function" f(x) [which may be 1/(l+e-x) or some other
"squashing function"] and a bias Oi to modify the previous operation:

si,= f(bi,) = f(l-jwij aj; + 6 i) (2-6)

Assume ýi, is the desired value. Define the error or "cost function" E
between the calculated and observed values:

E = (l/2)Pi(giL - Sip) 2  (2-7)

This value is then minimized with respect to the weights Wkm, a process
referred to as "learning." The learning procedure described below updates the
weights by making use of the derivatives of E with respect to each weight Wkm:

(c)E/aWkm) = "Ilj(Cip - Sil)(aSip/aWkm). (2-8)

By equations (2-5) and (2-6)

(asip/awkm) = (a~f/abij)(abip/Wkm) = f(bil) amr6ik (2-9)

where 8 ik = 1 if i = k and 0 otherwise. Consequently,

(ME/awkm) = - 1 ,L (&p - Sk,) f(bkp) amre = ZP Ak;k amI (2-10)

where

7



BACKGROUND

AkI, =: (41L, - skp) f(bkg,). 2 l

The algorithm frequently used to find a minimum in the value of E is
that of "steepest descent" or "gradient descent," adjusting the weights Wkm such
that

AWkm = -11(aE/aWkm). (2-12)

where 11 is an adjustable parameter altering the rate of convergence for a given
problem, and whose magnitude is determined by experience with a given type
of problem. The virtue of the steepest descent method is that, for small
incremen'; i1, it guarantees a lower value of E if the derivative is not at a
minimum, since, by (2-12),

AE = (aE/aWkm)AWkm = -i1(iE/aWkm) 2 < 0. (2-13)

The disadvantage of the steepest descent method is that it is an inefficient
procedure for rapid convergence. Consider an alternative, for example, of
finding an extremum for a quadratic surface. The usual relationship which
would converge in one iteration is Aw = AE/(ZE/aw), which guarantees
convergence in a single iteration. This is a superior method if the surface is
quadratic, which is the case for any surface close to an extremum (expansion
by Taylor's series). A number of alternative methods are becoming popular for
determining extrema (see Appendix III).

The procedure described in (2-12) may be readily generalized to handle
multiple layers. The convergence to a minimum using this procedure may be
excruciatingly slow for some problems, depending on the spread of eigenvalues
for the matrix A. Alternative approaches to obtain minima have been the
subject of numerous papers.

8



BACKGROUND

2.1.2. Multiple Layer Networks

The steepest descent method provides convergence and improved
solutions relative to the linear perceptron for a number of problems, including

the XOR problem. Additional functional flexibility
and/or ease of convergence is introduced with

F3  multiple layers. The layer referenced in each
equation will be introduced as a superscript in
parentheses, with bi, a b(1 )i,,; thus, for the presence of
a second layer,

F2 b(2) i = jjw( 2 )ij S(1)jlz (2-14)

and

F1  S(2)i;L = f(b(2)i,). (2-15)

The "energy" may be evaluated in a manner similar
to that outlined by equations (2-7) through (2-11):

(aE/aw(2)mn) = - MR (s(2)mpi - ým;) f'(b(2)mg) s(1)np = I,& A( 2 )mP S(1)np. (2-16)

The values of W(2)mn may be adjusted using the steepest descent method.
However, the adjustment of w(l)mn must use a relationship

(aE/aw(1 )pq) = - ',iI (s(2),iL - ýij) f'(b(2)i,)w(2)ipf'(b(1)pI)aqI

- { (b()pp)[i (s(2)p - ýi•)f (b(2)iP)w( 2 )ip] ) aq,

= - MI A(M)pg aqI (2-16)

where the definition of AM)MP. may be taken from the equalities in (2-16). This
technique of iteratively generating successive values of the weights is known as
"back propagation." A layer which does not have input or output "nodes" is
referred to as a "hidden layer," possible only in networks having three or more
layers.

9
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Cybenko 9 showed that the linear combination of functions inherent in
neural networks was equivalent to a single very flexible function, able to
simulate any well-behaved functional form in n-dimensional space. In fact, it
was shown that "any continuous function can be uniformly approximated by a
continuous neural network having only one internal, hidden layer and with an
arbitrary continuous sigmoidal nonlinearity."

As with single layered networks, the approach used to "learning" is
equivalent to adjusting the weights of neural networks to find minima in E
with a consequent reproduction of a desired input-output behavior. Once a
network has been "trained" by such procedures, additional information is
processed with the weights are kept constant; the classification or desired
response from the network is then obtained.

The simplicity of the multiple layered concept and the great generality
of problems to which it may be applied has attracted a large number of
participants into the neural network community. The possibility of training a
machine/algorithm to solve a wide variety of problems which are not we!!
understood, without having to do programming, provides a great attraction. A
number of impressive demonstrations of successful solutions have been
obtained.

Beyond this straightforward introduction, networks have be':n
introduced which are far more complex and which demonstrate an
uncountable number of variations. Interconnections among "neurons" (the
s(a)i values) may be designed to pass over more than one layer (whereupon the
common matrix notation fails to represent the mathematics adequately), and
feedback connections (from s(n)i to s(m)j, where m<n) may also be introduced.
These additional complexities add many variations to the possible functional
dependence associated with neural networks. Such combinations have been
used to solve a great number of problems of practical interest. However, with
this popularity came a lack of rigor in notation and approach, since the
fundamentals were readily amenable to variations. Solutions to problems were
examined and reported in a great variety of fields. A significant shortcoming
of many of these studies is a lack of comparison with alternative approaches or
a solid understanding of the merits or limits of the processes examined. If false

9 G. Cybenko, Approximation by Superpositions of a Sigmoidal Function,
Math. Control Signals Systems 2, 303-314 (1989).

10
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extrema are found through some convergence procedure, there is no guarantee
that the solution thus obtained is the global (and best) minimum. The true
performance improvement associated with neural networks is still being
evaluated and compared with other more conventional methods.

2.1.3. Unsupervised Classification and Self-Organizing Maps

One useful application of neural networks involves the classification of
items based on similar characteristics, where the pattern, number of classes,
and membership within each class is determined through execution of an
algorithm. Various approaches to this problem have been examined.

A popular approach found useful in problems encountered at NRL is the
Learning Vector Quantizer (LVQ) introduced by Kohonen. In this approach,
features corresponding to each member to be classified are mapped into n-
dimensional feature space. A comparison is made between the length of each
vector with initial vectors chosen at random (or with some pattern in mind
prior to the classification task). A small quantity of each chosen vector is
added to the initially random vector which it most closely resembles. This
procedure is iterated for each member to be classified. The resulting vectors
are found to follow directions characterizing each class of data. An illustration
of this method is presented in the automatic ESM system program described in
the applications section of this document.

Alternative classifiers such as the Linde-Buzo-Gray (LBG) classifier
typically partition feature space with an initial set of assumed cluster centers,
and determine the centroid of all points falling within the chosen partitions.
Subsequent iterations first move the centroid of the assumed cluster centers to
that existing within each partitioned space, then subsequently readjust the
partition locations based on the new location of each centroid. Iterative steps
to a self-consistent set of partitions and centroids serve to define each cluster.

2.2. TYPES OF NETWORKS

FEEDFORWARD AND FEEDBACK NETWORKS

This type of network contains connections in which each layer of nodes
is connected only to the preceding layers. Such an arrangement appears to be
the most common in use today. Alternative topologies include feedback as
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well as feedforward counections. Feedback certainly introduces additional
complexity; however, the back propagation model continues to give some
degree of convergence on extrema when used with neural networks having
feedforward and/or feedback.

HOPFIELD NETWORK

The original highly cited paper by Hopfield 1 0 introduced concepts and
algorithmic behavior which stimulated considerable subsequent activity. The
formulation was clearly modelled after concepts associated with neural
activity, and much of the notation and language followed these concepts.
Hopfield was concerned with the recognition of patterns, and proposed a
specific initial choice of weights and activation function which provided a
surprisingly effective (although limited) pattern recognition capability. The
basic algorithm for feedforward "activation" of each "neuron" is the same as
that featuring equation (2-6). The activation function used is the hard limit,
represented by the step function:

0 if x<0
f(x) = 1 if x>O

All neurons have the values of either Sik = 1 or 0 which represent
amplitudes for an initial pattern belonging to class k. The initial choice of
weights is given as

Wij = Ek (2 sik -l)(2sjk-l), i*j

with the additional restriction that the diagonal elements are zero:

Wii= 0.

Iteration of the "neuron values" takes the form

Simrnew = f ("jWijSjm} = f{ 1j Z"k (2 Sik -l)(2Sjk-l)Sjm)

10 J. Hopfield, Neural networks and physical systems with emergent
collective computational abilities, Proceedings of the National Academy of Sciences
79. 2554-2558 (1982).
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= f{-k (2 sik -1)7.j (2Sjk-!)Sjm) = f{T-k (2 s5- 41)SkmN/2) = sir

where, for patterns which are not closely related, the sum over j represents a
product of nearly orthogonal vectors with length N/2 (about half of the values
of Sjk will be zero). Thus, the calculation of the neuron values for a given

pattern gives rise to a pattern most closely resembling the input to the
network, an interesting result. Adjustment of the weights using the previously
outlined approaches will generate a "learned" network able to "purify" an
input pattern, giving an output more closely resembling the pattern to which
the network has been programmed. The result of this process is to provide a
decision tool able to recognize and manipulate an input pattern according to
a limited set of preprogrammed patterns.

KOHONEN SELF-ORGANIZING NETWORK

The Kohonen network is a self-organizing network used for classification
[Footnote 6]. Each of a series of pre-existing events is "topologically mapped"
with a set of characteristic parameters, forming an ordered array of data. A
discriminant is introduced to assign a "merit" to each newly introduced event
relative to each pre-existing event. An optimum pre-existing event is selected
through this process as that with the greatest merit. After this selection
process an adaptive process occurs which adjusts the parameters
corresponding to the pre-existing value(s) by incorporating those of the newly
selected event.

A frequently encountered application of the Kohonen network is to
classify a sequence of observed vectors, each belonging to n classes
characterized by their similarity (spatial closeness) in N-dimensional space.
This is known as the Learning Vector Quantizer (LVQ). A random set of vectors
may be initially chosen, where the number of random vectors is greater than n.
The distance between each observed vector and each of the initial random
vectors may be calculated in sequence, and the random vector most closely
resembling (nearest distance) the observed vector is chosen. It is then
modified by the addition of a fraction of the observed vector. This process is
repeated for each observed vector in sequence. This produces n vectors which

emerge from the initial random selection. The resulting n vectors exhibit

13
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average characteristics of the vectors belonging to each class. An example is
demonstrated with the automatic ESM recognition section in this document.

ART (ADAPTIVE RESONANCE THEORY)

Proposed by Grossberg11 , ART is capable of
switching between the learning mode and the F3
stable (classification) mode. This is illustrated I
by the accompanying figure12 . Input at layer F,

is fed into the next layer, F2 , which, in addition -d,,
to the usual activation function, has JF
"inhibition," in which the adjacent nodes 2

interact with one another (illustrated by the
curved arrows at the F2 level). Inhibition may
be defined by the relationship

Si(n) = Si(n) -•aj~ i Sj(n) F1

where a is an adjustable parameter. Such a
relationship tends to increase the larger values
of si(ii) and decrease the smaller values. As such, inhibition serves to select the
more "important" of the nodes in a manner which resembles the simple
mathematical operation of finding the maximum. In addition, the output
layer at F3 is fed back to the hidden layer F2 in order to stabilize the existing
pattern which is developed during the "learning" process.

This arrangement has the advantage of accepting additional information
from the input while stabilizing the overall pattern through feedback from the
output layer. The degree of stabilization may be adjusted heuristically by
changing the degree of feedback and inhibition.

11 S. Grossberg, Nonlinear Neural Networks: Principles, Mechanisms, and
Architectures, Neural Networks, 1, 17-61 (1988).

12 G. A. Carpenter, Neural Network Models for Pattern Recognition and
Associative Memory, Neural Networks 2, 243-257 (1989).
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Such a network appears to incorporate a number of features reported in
many articles in the literature. The construction of such networks may
accomplish a goal given sufficient effort, but design and parameter adjustment
appears to be highly dependent on the specific problem under investigation.

2.3. NEURAL NETWORKS AND STANDARD METHODS

Many manipulations performed by neural networks resemble algorithms
and methods used for years in signal processing. The differences are clear,
however, and should be recognized. Unfortunately, in many cases,
practitioners involved with neural networks are not always aware of these
previously developed techniques. One recent book recognizes the importance
of establishing a framework for the design of networks 13 . A recent paper shows
that tbh optimal adjustment of weights in a single-layer perceptron is
equivalent to the Wiener solution for signal analysis1 4 . The relationship
between neural networks and partial least squares modeling has been recently
investigated1 5 . Progress may be improved if the fundamental building blocks
allow future efforts to expand from a well-founded base of fundamentals.

The operations of neural networks resemble those of alternative methods
to accomplish similar or related objectives. For example, the simple
multiplication of a matrix and a column vector is equivalent to a recognition
operation. If, for example, the rows of a matrix wij and the components of a
column vector aj are normalized, then the product is the inner product,

jw ijaj = cos *, the direction cosine between two vectors in n-dimensional
space. The row of the product column vector which is most nearly equal to
that of the input column vector is the index for the element having the
greatest value. Subsequent application of the "squashing function" is another
way of selecting (giving greater weight) the largest value relative to the other

13 T. Hrycej, Modular Learning in Neural Networks, John Wiley & Sons, Inc..
NY (1992). NRL Library QA 76.87 .H78, ISBN 0-471-57154-7.

14 A. Feuer and R. Cristi, On the Optimal Weight Vector of a Perceptron with
Gaussian Data and Arbitrary Nonlinearity, IEEE Transactions on Signal Processing,
41, 2257-2259 (1993).

is S. J. Qin and T. J. McAvoy, Nonlinear PLS Modeling using Neural Networks,

Computers Chem. Engng, 16, 379-391 (1992).
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values present. Alternatively, "inhibition" is equivalent to increasing the
largest value while diminishing smaller values of a selected set of numbers.
Both of these nonlinear operations may be compared to the simple function of
finding the maximum value of numbers in a column vector, setting it equal to
unity, and setting the values of the other elements to zero. The operation of
taking the inner product is also equivalent to forming a matched filter, a
concept used in signal processing for years. The cross-correlation function is
the optimal filter with Gaussian noise present, and, again, this is equivalent to
the operations described above.

Thus, several standard signal processing techniques offer a way to find a
vector most similar to another by evaluating the angle between them in n-
dimensional space. Self-organizing methods by Kohonen likewise determine
the similarity between vectors in n-dimensional space, only, in these self-
organizing methods, the distance between two vectors is the measure of merit
rather than the angle between the vectors.

Beyond the operation of classification outlined above, the vector analogy
may extended to the operation of "purifying a pattern" recognized with a
Hopfield network (and related networks). Such an operation may be perceived
as an additional matrix operation following the classification operation. Once
the most likely choice has been made, and a classification of the input vector
has been determined, a subsequent multiplication by the appropriate matrix
will generate a predefined pattern (or image) perfectly. An alternative
relationship for generating these images is possible if the vectors for these
images are nearly orthogonal, as pointed out in section 2.2.

Appendix 11 outlines the standard method of least squares and the use of
the pseudoinverse as a means of performing that operation. The
pseudoinverse has been recognized as having properties of a memory array 16

and is capable of giving directly the operations which recognize selected
patterns stored in the pseudoinverse. The output array from such an
operation consists of l's and O's based on the relationship between input and
the stored information. Thus, classification decisions from these operations
are clear and do not require nonlinear operations. More complex behavior

16 H. Ritter, T. Martinetz, and K. Schulten, Neural Computation and Self-
Organizing Maps, Addison-Wesley Publishing Co., NY (1992). NRL Library QA 76.87
.R58; ISBN 0-201-55443-7.
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may be simulated using nonlinear least squares techniques. This is generally
done with iterative techniques involving linear approximations for each
iteration. Iterative least squares techniques and the methods of multiple layer
neural networks may indeed have some similarities; however, a careful analysis
of the two techniques remains to be made.

2.4. HARDWARE IMPLEMENTATION

With the explosion of interest in neural networks is the introduction of
specially designed chips and parallel processors. The ability to calculate
numerical values at one processing unit using input from neighboring
processing units on a single chip set the stage for efficient hardware
implementation of network models. The combination of new algorithms along
with the quantum leap in computational ability is one reason to expect
advances which may prove quite powerful as advanced software and hardware
combine in a synergistic manner.

One recent book discusses the various architectures available today for
neural network calculations 17 . A number of new chips have been introduced
which are patterned with the Single-Instruction Multiple Data (SIMD)
architecture. From 1 to 512 input and arithmetic channels may be used to
operate on the input vectors. Some architectures operate on two-dimensional
arrays. Both fixed and floating point arithmetic are available from
manufacturers today. It is important to note that, using this hardware, the
number of weight updates per second for many neural network operations
exceed the fastest single CPU performance in supercomputers today by 1 - 2
orders of magnitude. Thus, although several neural network algorithms seem
computationally inefficient, hardware implementation may provide superior
performance for some problems. Examples will be forthcoming and will be
tested over the next few years.

17 K. W. Przytula and V. K. Prasanna, Parallel Digital Implementation of
Neural Networks, Prentice Hall, NJ (1993). NRL Library QA 76.87 .37; ISBN 0-13-
649161-8.
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3. APPLICATIONS OF NEURAL
NETWORKS

A large number of applications using neural networks have been
examined. Good references include the DARPA study of 1988 [Footnote 8] a n d
the overview by Simpson1 8 . The list is heavily weighted towards signal
processing, pattern recognition, classification, and learning techniques for
motion optimization (such as robotic action).

Several classification problems may be readily attacked using self-
organization network algorithms. This is particularly true when the features to
be recognized are represented by a vectors in n-dimensional space (such as the
Fourier components of a time-dependent signal). The original classification by
Kohonen was to produce a Finnish phonetic typewriter.

Signal processing. speech recognition, and similar challenges having data
in the time or spatial dimension may be pursued with a multilayer perceptron
with back propagation or some similar approach. Recognition of signals
involving sonar, radar, speech, etc. has been shown to be successfully attacked
using these approaches. Application of signal recognition techniques to
problems such as helicopter gear box fault determination has been successful.
Pattern completion is a form of signal processing in which a network has the
ability to shape an input signal to provide an output resembling one of the
various classes of patterns to which it has been previously programmed. This
includes the removal of noise from a corrupted input pattern.

Feature extraction from images (such as line or edge recognition) is
showing promise using network approaches.

Control of. for example. robotic and autonomous vehicles deals with
optimization in n-dimensional space of an algorithm to produce a desired
learned response. A demonstrated example is the problem of keeping a vertical
broom handle from falling over due to the force of gravity while control forces

18 P. K. Simpson, Foundations of Neural Networks, in book - Artificial Neural
Networks: Paradigms, Applications, and Hardware Implementations, edited by E.
Sanchez-Sinencio and C. Lau, IEEE Press, NJ (1992). NRL Library Q 335 .S545 (1990).
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are applied to the base. Neural network algorithms for learning successful
behavior to such problems have been implemented' 9 .

Function simulation is a method of fitting a desired behavior with a
functional dependence which properly reproduces that behavior. Control of
robotics falls in this category, although robotic behavior is combined with
"learning" to obtain a desired functional dependence which may not be
formulated or understood. In general, per Cybenko [Footnote 9], any function
may be simulated with neural networks given enough parameters, just as any
function may be simulated with higher order polynomials. For some
applications, the convenience of neural networks may provide some
advantages for simulation.

These applications have been briefly listed to introduce the most
frequently encountered categories of existing programs. Clearly, a number of
additional problems may be successfully investigated using these techniques.
It remains to see how innovation and imagination will implement these
challenges productively.

19 D. W. White and D. A. Sofge, Handbook of Intelligent Control: Neural,
Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, NY (1992). NRL Library TJ
217.5 .H36.

19



4. NRL PROGRAMS RELATED TO
NEURAL NETWORKS

4.1. ADVANCES IN FUNDAMENTALS OF NEURAL NETWORKS

A number of programmatic efforts at NRL have been directed at
improving the basic algorithmic approach to certain types of neural networks.
A larger number of programs take advantage of the enhanced values such
networks offer for specific applications. These programs are discussed briefly
below.

4.1.1. Classical Optimization using Clustering

Combinatorial optimization problems (e.g. traveling salesman problem,
TSP, clustering, and task assignment) arise in many fields. The number of
possible solutions in such problems is so large that finding the best solution is
beyond exhaustive search; hence, in practice one is content with finding a good
solution. The Hopfield model of neural networks provides an attractive
approach. At NRL the challenge of clustering using neural networks has been
addressed 20 as it is basic t,) several programs involving classification and
identification of signals; clustt ig is also of interest in other fields involving
image analysis2 1 , taxonomy, etc.

The general clustering procedure involves partitioning a set of N patterns
into K clusters such that the elements in each cluster have a greater similarity
to each other than to the elements in the remaining clusters. Formulating
clustering (or other problems) in terms of a Hopfield network involves
embedding a discrete problem in a continuous domain; therefore, one must
construct an objective function which contains the cost as well as constraints
[Footnote 20]:

20 B. Kamgar-Parsi and B. Kamgar-Parsi, Hopfield model and optimization
problems, in Neural Networks for Perception, edited by H. Wechsler, 2, 94-110,
Academic Press (1992).

21 B. Kamgar-Parsi, B. Kamgar-Parsi, and H. Wechsler, Simultaneous fitting
of several planes to point sets using neural networks, Computer Vision, Graphics, and
Image Processing, 52, 341-359 (1990).

20



NRL PROGRAMS RELATED TO NEURAL NETWORKS

E = (A/2)1:i -p I-q*pVpiVqi + (B/2)Zi (Zp Vpi - 1)2 + (C/2)Ei -p d(xi,yp)Vpi2

where the sum over i encompasses
the N patterns, and the sums over p
and q are over K clusters. The
neuron activity, 0<Vpi l, represents

the strength of attachment of
pattern i to cluster p. Here, the C-

term is the cost, and the A and B
terms enforce the constraint that, at
the end of the search, each pattern
must uniquely belong to one and
only one cluster. The network

dynamics are given by the set of
ordinary, nonlinear differential
equations dbpi/dt = -)E/aVpi, where

bpi are the neuronal input potentials

and are related to the firing rates by a sigmoid function. Tests have shown that
this neural network approach performs better than conventional techniques
for solving clustering problems.

Since constraints are included in the objective function, the network
may, in some of its trials, find meaningless or invalid solutions (i.e. solutions
that do not satisfy the constraints or the "syntax"). For clustering, this is a
manageable difficulty, while, for TSP, it is severe. Hopfield and Tank, in their

seminal paper, reported great success in solving the TSP. Their results were

subsequently challenged by researchers who could rarely find valid solutions;
thus this entire approach became suspect. However, it was found at NRL

[Footnote 20] that the difficulty lies in the use of an overly complex TSP

syntax, rather than in the neural network model; this was evidenced by

clustering, which has a simpler syntax and performs well. It was also found at

NRL that dynamical stability analysis of solutions, a seemingly intractable

undertaking, reduces to only a few inequalities which may be useful in two

respects: (i) selecting optimal values for network parameters, and (ii) selecting

the most appropriate formulation in cases where constraints may be

formulated in more than one way. Furthermore, it is shown that by analyzing
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the eigenmodes of the connection matrix, a heuristic formulation may be
revised and made more effective2 2 .

4.1.2. Generalization and Learning by Convex Topology

Consider a simple perceptron mapping an input space Qx into ly. If a

distinct class coding is forced upon Gy, then the perceptron's discrimination

capacity is limited to linearly separable regions in Q.. Equivalently, a
necessary condition for zero error of the transformation of Q. into fy is that
the class specific convex hulls (defined in next paragraph) must be disjoint
(not overlap) in 123.

The convex hull of a set of sample points in n-dimensional space is the
minimum surface that bounis the points. A physical example in two-
dimensional space is to imagine an elastic membrane that is stretched and
placed around a set of points. If the membrane is released, it shrinks and
surrounds all the points. The convex hull is described by the vertices, the
points that deflect the membrane.

A > A
OVERLAPPING HULLS

22 B. Kamgar-Parsi and B. Kamgar-Parsi, A revised clustering technique
using a Hopfield network, Proc. World Congress on Neural Networks (WCNN '93),
Portland, OR, to appear July, (1993).

23 J. Willey, et. al., Generalization and Learning by Convex Topology,
Proceedings of the IJCNN '92, Beijing, China, Nov. 3-6, Vol. I1, pp 395-401 (1992).
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The necessary conditions of disjoint convex hulls form the basis for a
new multiple layer perceptron (MLP) learning algorithm. For a specified class
coding in the output space Qn of an MLP network, a set of topological
constraints is generated in On-1, the space sampled by the perceptrons forming

On" A closed form cost function was developed to measure the disjointness of
the class specific convex hulls in .n-1" Cauchy simulated annealing is then
used to perturb the weights of the perceptrons forming On-1, to minimize the
objective function, and to satisfy the topological constraints. The convex hull
locations in .n-I also "code" Qn-1- Hence, the algorithm iterates backwards
through each layer of the MLP network. Once the necessary conditions have
been satisfied, gradient descent of the weights between O n-, and 4 completes
the desired mapping.

Bounds on the probability of error of trained MLP's may be understood
from the topological perspective. In any layer space Oz, if the class specific
convex hulls intersect, then a lower bound on the probability of error has the
form

Pr(Error) ot I"iP(i)Jpz(zli)dz

where P(i) is the a priori probability of the class i, pz(zli) is the probability
density function in z of class i, and the integral is over the volume(s) in z in
which two or more class specific convex hulls intersect. Similarly, an upper
bound on the probability of error for disjoint convex hulls in Q, is:

Pr(Error) 2t I- IiP(i)fpz(zli)dz

where the integration in this case is over the convex hull volume of the class i
samples in Oz.

In conclusion, this algorithm demonstrates the necessary topological
constraints which an MLP network must satisfy. Furthermore, the constraints
alone may form the basis of a stochastic learning algorithm for MLP's. Bounds
on the probability of error may also be expressed in terms of the convex hull
locations in each layer space. This demonstrates the learning algorithm and
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generalization properties for an MLP having two layers of weights capable of
solving the the XOR case.

4.1.3. Collective Recall for Classification via a Relaxation
Neural Network

A method has been introduced 24 which determines the classification of a
measurement by comparison with the distances to points in feature space of
known classification. Unlike nearest neighbor recall which generates jagged
(spurious) decision boundaries, this method provides smooth decision surfaces
by taking into account a number of identified positions for this process.

Consider a number of points in n-dimensional space representing
successive measurements of parameters associated with either class A or class
B. The patterns of the classes are assumed to be distinguishable. Hence, any
measurement of parameters associated with an unknown class belonging to
either A or B may be characterized by comparison of the points associated with
the unknown relative to the two characterized clusters.

A useful algorithm for this purpose is one which describes the
evolutionary behavior of neuron values according to the relationship

bi(t+l) = f[bi(t) + Yjwijbj(t)]

where the function f[ ] is

1, x>0
f[] = x, -l<x<l1

1 -, x<-I

and the weights are chosen such that

r e if ij in same class
ij- -f if ij in different classes

24 A. Schultz Collective Recall via the Brain-State-in-a-Box Network, to be
published.

24



NRL PROGRAMS RELATED TO NEURAL NETWORKS

This equation, upon iteration over time, converges to values of bi = +1 or -1,

thus forcing a classification based on the interrelationships given by the
weights Wij. An initial set of bi(t=0) values are chosen according to the
relationship

bi(t=0) = exp(-Ixi-z12/do)

where Ixi-zl is the distance between the point to be classified and the existing

points with identified classification, and d. is a scale parameter.

Alternative assumptions have also been examined, along with an
analysis of the values from the point of view of the principal axis system. This
method is compared with other methods and the merits of each are discussed.

4.2. APPLICATIONS OF NEURAL NETWORKS

4.2.1. Adaptive Retina-Like Processing in Detector Arrays

Image formation with infra-red focal plane arrays is plagued with
irregularities (typically ±10%) in the response of each pixel, which vary widely
in sensitivity. These same irregularities exist with the human retina, although
photobleaching and "signal processing" involved in human vision are able to
adapt to such variations. The similarity between the algorithms involved with
neural networks and those associated with image processing has been

discussed 25 . Self-adaptive algorithms for IR focal plane arrays have been
examined and introduced at NRL to obtain a significantly improved image
using neural network approaches 2 6 .

A linear nonuniformity correction (NUC) is of the general form

yij = Gijxij(4'ij) + Oij

25 J. Y. Jau, Y. Fainman, and S. H. Lee, Comparison of artificial neural
networks with pattern recognition and image processing, Appl. Optics 28, 302-305
(1989).

26 D. A. Scribner, J. T. Caulfield, K. A. Sarkady, and M. R. Kruer, Real-time
Implementation of Adaptive Nonuniformity Correction for IR Focal Plane Arrays,
Aug. 12, 1992.
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where Yij is the corrected output
voltage from a pixel in the i-th row GAIN AND OFFSET OF EACH PIXEL IS
and j-th column, xij(4D ij) is the AVERAGED OVER A VARYING SCENE

voltage from the ij-th pixel, bij(t) is E 3888
the time-dependent image of
irradiant photon flux on the
detector, Gij is the gain, and Oij is [El 7
the offset correction. This E3 El E3 0
technique suffers from pixel
nonlinearities and instabilities,
which limit the accuracy of the
calibration.

An adaptive NUC studied at NRL has been applied to an image moving
across the pixels. A local spatial neighborhood average fij = (1/4 )*(yi+l.j + Yi-ij
+ Yij+l + Yi,j-1) is then used to estimate the desired average output of pixel ij.
Using an adaptive LMS approach, a neural network algorithm has been derived
which gives a recursive relationship between the n-th and (n+l)-st gain and
offset for each frame27 (each element except a has the subscripts ij):

Gn+= Gn- 2ax(y-f)

0.= On- 2a(y-f)

where a is chosen to control the step size and consequently the stability. These
equations were derived using the method of steepest decent to converge to the
appropriate values. To prevent drifting of the gain values toward zero, a
frame-by-frame normalization of G and 0 is performed.

This algorithm dramatically improves the quality of images from IR focal
plane arrays, successfully compensating to a high degree for irregularities in
pixel area and gain. It is being adopted in systems for use within DoD, and has
applications in many other areas involving the calibration of detector arrays.

27 D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C.
Herman, Adaptive Nonuniformity Correction in IR Focal Plane Arrays, SPIE 1541, 100
(1991).
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4.2.2. Sensing of Image Motion with Gabor Receptive Fields

The architecture of the motion sensing system is inspired by
neurophysiology research on the primate vision sy:;tem in cortical processes.
In the primate vision system, motion is sensed by magno cells in the visual
pathway.

The model of the magno receptive fields is derived from the
functionalities of the simple cells, complex cells and hypercomplex cells in the
visual cortex. Receptive fields of simple cells can be modelled as 2-D Gabor
function, i.e. a Gaussian modulated sinusoidal function:

G(xy) = exp [-[x2/(2ax2)+y 2/(2ay 2 )]) exp [-iwo(xcosO + ysine]

This function is an ellipsoidal Gaussian modulated at angular frequency Wo

with an inclination 0 relative to the axes. The complex cell, modelled by a

quadratic combination of the outputs from even and odd simple cells, is
responsible for energy measurement. The hypercomplex cell, modelled by
spatial differentials of the Gabor function, measures the change of spatially
oriented contrasts.

The motion sensing system calculates local motion information and

performs Gabor and differential Gabor transformations at each location of the
image. It computes motion accurately without doing global smoothing. This

algorithm relies only on a single "expanded frame", i.e. single image frame

accompanied with its time derivative.

The essential part of computational model is the following. A moving

small image patch can be described as I(x',y',t) = I(x-uxt,y-uyt), where V =

(u1 ,Uy) is the motion velocity vector of the patch. Let I(x,y) be the image frame

sampled at time t=O, and J(x,y) = dI(x,y,t)/dtlto be the time derivative of the

time-varying imagery sampled at the same time t. Applying the Gabor

receptive fields to J(x,y), we have 28 :

28 T. R. Tsao and V. C. Chen, A Neural Network for Optical Flow Computation

based on Gabor Filters and Generalized Gradient Method, International Journal of
Neuro-Computing, No. 5, pp. 1-21 (1993).
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JJJ(x~y)G(xo-x,yo-y)dxdy = - V.JJI(x,y)VG(xo-x,yo-y)dxdy

To fully constrain visual motion, a collection of Gabor receptive fields,
different only in orientation, are needed to determine the two-dimensional
motion vectors. Then, the local motion is extracted by minimizing the Least
Square Error function.

This algorithm overcomes the limitations and the complexity of other
models by taking time derivatives of the Gabor responses as a carrier of motion
information and by introducing a concept of differential Gabor receptive fields
to avoid spatial derivatives of image intensities. Therefore, the system does
not require pre-smoothing of images and extracts motion information from
only a single expanded frame or two successive frames.

Preliminary research and computational experiments on motion sensing
have been conducted on conventional computer. Gabor pyramid was used for

extracting two-dimensional velocity flow fields (image flow) of a non-
homogeneous motion. Motion information was integrated from multiple levels
by a coarse-to-fine control strategy and combined to obtain the image flow2 9 .

To illustrate the effectiveness of the Gabor pyramid for extracting image
flow, an image sequence (called Hamburg taxi in the accompanying figure)
containing non-homogeneous motion was selected for the study. Only two
frames from the image sequence are used. The Gabor motion vector contains 4

orientations. There are 4 moving objects in the Hamburg taxi sequence. The
taxi is turning right at the comer with velocity about 1.0 pixel/frame. A car in
the lower left is moving from left to right with velocity about 3.0 pixel/frame.
A van in the lower right is driving right to left with velocity about 3.0
pixel/frame. There is a pedestrian in the upper left with velocity about 0.3
pixel/frame. The image flow computed from two frames of the sequence is
shown in the figure labed "The image flow ....." Our result shows that the
performance of the Gabor pyramid is very good. The image flow for the two
fast moving objects (a car and a van) and for the normal moving taxi is

29 V. C. Chen and T. R. Tsao, Gabor-Wavelet Pyramid for the Extraction of

Image Flow, Proceedings of 1993 SPIE Mathematical Imaging: Wavelet Applications in
Signal and Image Processing (1993).

28



NRL PROGRAMS RELATED TO NEURAL NETWORKS

correctly extracted. The slow moving pedestrian in the upper left can also be

seen.

Hamburg Taxi sequence
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4.2.3. Polynomial Neural Networks for Signal/Image Processing

A method for obtaining a least squares solution to a high-order
polynomial with several variables was introduced in a novel manner by A. G.
Ivakhnenko 3° and is known as the Group Method of Data Handling (GMDH).
The GMDH algorithm provides an approximate solution of the complete
Kolmogorov-Gabor polynomial, which may be written as

y= a + "ibi xi + I"i~jcijxixj + Fi.j.kdijkXixjXk +

In computer implementations of the GMDH algorithm, the
Kolmogorov-Gabor polynomial is replaced by a composition of lower order
polynomials. This composition results in a multi-layer feedforward
polynomial network which, for example, may be represented by third order
polynomial transfer functions S, D, T , where

S = UO+ U1 X1 + U2x 1
2 + U3X1 3

D = vo + Vl Xl + v 2 x 2 + v 3 X1 2 + v 4 x 2
2 + v 5 x1 x 2 + v 6 x 1

3 + v 7 x 2
3

T-= w0 + w 1 x 1 + w 2 X2 + w3X3+W 4 x 12+ w5x2 2 + w 6 x 3
2 + W7X 1 X2+ w8xj x3

+ W9 X2 X3 + W 10 X1 X2 X3 + W 11 X1
3 + W 12 X2

3 + W13 X33

There is a significant difference between the GMDH method and the
straightforward method of directly utilizing this expansion. The process of
iteratively selecting only the "best" variables y (and successive approximations)
prunes the totality of coefficients in the general expansion such that only
selected cross terms survive the GMDH treatment. Selecting only those which
are "best" (i.e. retaining those values of y for which the mean square error is
small) retains only those basic variables x which are best at fitting the observed
data.

In an NRL study, using this algorithmic approach, a pulse signal

30 S. J. Farlow, Self-Organizing Methods in Modeling: GMDH-Type
Algorithms, Marcel Dekker, Inc., NY (1984).
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embedded in a chaotic background and an image of ocean waves were
treated 31 .32. These examples are typical of the detection of threshold signals or
images in a chaotic background (chaotic backgrounds are quasi-deterministic,
not random noise). First, the characteristics of the chaotic background are used
to train a polynomial neural network as a global predictor. A small coherent
signal may then be detected by subtracting the predicted chaotic background
from the observed signal plus background. This method appears to give good
results in preliminary tests.

This approach is not strictly a neural network approach; however, due to
the resemblance between networks and the concepts here, where the results of
certain operations are fed into successive iterations, it has been included. It
appears to be a powerful technique for fitting complex interrelationships in
some cases.

4.2.4. Parametrizing Total Energy Databases

The utility of neural networks for approximating complex functions at
times makes them attractive as an alternative to other functions used in more
standard calculations. One NRL effort involves exploring the prediction of
material properties with neural network methods.

Stand ard
formulations for

thermodynamic
properties and/or
material changes W

from first
principles involve MSTANE

the solution of
the quantum
mechanical Hamiltonian. Accuracies of approximately kT (or about .025 eV)

31 S. Gardner, Polynomial Neural Nets for Signal Detection in Chaotic
Backgrounds, Proceedings, Southcon/92, Orlando. Florida. March 10-12 (1992).

32 S. Gardner, Polynomial Neural Nets for Signal and Image Processing in
Chaotic Backgrounds. SPIE 1567, Applications of Digital Image Processing XIV (1991).
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are required for a reasonable thermodynamic predictions. Ab initio calculations
are accurate but use excessive machine time; the upper limit to the number of
atoms reasonably handled with these calculations is approximately 10. This
number is too small to predict the necessary properties of larger clusters which
approximate matter more completely.

An initial approach is to use fairly simple formulations of total energy for
structures of atom clusters to determine whether the neural network can give an
accurate replication of the material behavior predicted with these simple
models. If that is the case, subsequent efforts will focus on adjusting the
parameters of suitable networks while using ab initio calculations for
comparison. This parameter adjustment will terminate with cluster sizes of
about 10 atoms. Once the parametrization has been introduced through the
comparisons of small cluster sizes, the validity of predictions for larger cluster
sizes will be examined.

The basic relationships initially used include the Leonard-Jones potential
(a classical model involving only the distance between two atoms), the
embedded atom potential (involving two-body interactions along with a third
function involving the energy of "embedding" an atom in a sea of electrons from
the other atoms), and the Stillinger-Weber potential (a function of three-body
interactions).

The first network used to fit these basic functions was a feed-forward
perception with one hidden layer. A hyperbolic tangent was used to "squash"
the output of the layers. The total energy of a cluster of atoms was calculated
(for various crystal symmetries) with the classical techniques mentioned above
as a function of distan'es. This constituted a database for subsequent
parameter adjustment. Ine cost function was the least mean square (LMS)
between the values calculated by the network and those calculated by the
classical models.

A number of optimization approaches have been investigated for
adjusting the weights. Experience has been gained with back propagation,
simulated annealing, and genetic algorithms. It was found that the back
propagation method is extremely time consuming and is therefore not
recommended. Simula -d annealing offered considerable improvement.
Genetic algorithms ap, c.... ! to map out the n-dimensional space rapidly.
Subsequent optimization 'ýji;ag the conjugate gradient method represented a
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quick way to find a good minimum initially approximated by the genetic
algorithm.

Initial results using classical energy functions show that the neural
network is able to simulate the classical behavior to a reasonable degree of
approximation (currently about 0.1 eV). Further refinement is underway to
determine the true limits of this method.

It should be noted that other approaches to this simulation are to be
explored, thus testing the neural network approach against alternatives. In
addition, new methods of optimization will be introduced. These methods are
outlined in Appendix III.

4.2.5. Hierarchical Wavelet Representation of Ship
Radar Returns

Short pulse radar returns from ships contain considerable information
from which features may be extracted. Such features, if properly interpreted,
may be used for ship classification and/or identification. In this NRL effort, an
investigation is being undertaken to find efficient representations of large
databases of pulsed radar returns in order to economize memory requirements
and minimize search time.

Using a model of 400 to 1000 scatterers moving stochastically in response
to simulated seawaves, and incorporating such random phenomena as
multipath and clutter, signal returns from ships were simulated. The behavior

AIII . 6
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3CLASSES

33



NRL PROGRAMS RELATED TO NEURAL NETWORKS

of these signals was examined for characteristics which may lead to recognition.
The wavelet transform was found to be a useful representation of the time-
dependent signt' from a ship. This transform was used because of its ability to
represent impulses characteristic of the sharp features arising from masts and
other localized reflectors at certain angles. The basis functions form a complete
orthogonal set, useful in representing the signals.

In this investigation the amplitude of the envelope of the extended target
signal return was represented by a vector of length 128. This data were then
represented by a multiresolution decomposition using a wavelet basis. The
multiresolution data were then organized into a hierarchical structure by
combining the Linde, Buzo, Gray (LBG) algorithm with a tree-structured vector
quantizer (TSVQ) paradigm.

The LBG algorithm is similar to Learning Vector Quantizer (LVQ), a
clustering algorithm which converges to the optimal Bayes decision surface.
However, in the case of LBG, it is not signal differences but, rather, signal fidelity
which is emphasized. The algorithm is initialized by a set of (reference) vectors
in n-dimensional space. This n-dimensional space is then partitioned into cells,
one cell for each reference vector, defined by all points in the space closest to
the given reference vector. The centroid of each cell is calculated based on the
available data, providing a different location for a cluster center than initially
chosen, whereupon a subsequent choice of vectors is chosen and new cells
introduced. This iteration procedure is continued until self consistency is
reached.

A TSVQ paradigm quantizes data hierarchically. In the context of the
effort described here, a multiresolution representation of the data produces
representations of the ship signal return in a number of resolution scales. LBG is
repeatedly applied to the coarsest resolution data, adding cells with each
iteration until the reduction in distortion falls below a given threshold. At that
point, the cell which is the greatest contributor to average distortion is further
expanded in the next higher resolution scale by applying LBG to the
observations which fall in that cell at the next finer resolution scale. The
algorithm proceeds in this way until either the desired distortion level is
reached or until the maximum allowable number of cells has been apportioned.

By experimental results, it was shown that the combined algorithm results
in data search times are logarithmic in the number of terminal tree nodes, and
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experience negligible performance degradation (as measured by distortion-
entropy curves) from the full search vector quantization. Furthermore, it has
been shown that the combined algorithm provides an efficient indexing scheme
(with respect to variations in aspect, elevation and pulse width) for radar data;
this is equivalent to forming a multiresolution aspect graph or a reduced target
model.

4.2.6. Inverse Synthetic Aperture Radar (ISAR) Signal
Classification

ISAR signals are used to classify ships based on the images formed by the
radar process. These images are distorted compared with those recognized by
ordinary visual observation, and experienced operators are required in order to
extract sufficient detail to make accurate classifications from these images. This
research program is based on the exceptional utility anticipated from an
automatic recognition algorithm.

The classification of simulated ISAR images using neural networks is
described in recent papers3 3 .3 4 .3 5 . The simulated image is projected onto the
horizontal range axis using a measurement of the weighted variance in the
image:

ai = [Xj(j-ri)2 pij]/K

where Pij is the intensity in simulated range-doppler cell ij, and ri = 1 jJpij is the

center of mass in range bin i. Pij is normalized so that IjPij = 1; an overall

33 C. M. Bachmann, S. A. Musman, D. Luong, and A. Schultz, Unsupervised
BCM Projection Pursuit Algorithms for Classification of Simulated Radar
Presentations, accepted for publication in Neural Networks.

34 C. M. Bachmann and D. Luong, Extensions of Unsupervised BCM Projection
Pursuit: Recurrent and Differential Models for Time-Dependent Classification, to
appear in Proceedings of the 1993 World Congress on Neural Networks, Portland, OR,
July 11-15 (1993).

35 C. M. Bachmann, S. A. Musman, and A. Schultz, Classification of Simulated
Radar Imagery using Lateral Inhibition Neural Networks, Neural Networks for Signal
Processing, II - Proceedings of the 1992 IEEE Workshop on Neural Networks for
Signal Processing, Copenhagen, Denmark, Aug. 31-Sept. 2 (1992).
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normalization constant, K, takes account of the variation across all range bins,
and is invariant to shifts in scale in the simulated Doppler dimension.

These range-bin moments become the input to the neural network
responsible for identifying the Perceptual Class of the simulated ISAR
presentations. Thus, not all of the image information is presented to the
network; however, the preprocessing step does take advantage of underlying
symmetries in the imagery; features may change in the simulated Doppler
domain but they will remain constant in the simulated range domain.

Two approaches in the design of the neural network were tested for this
recognition/classification problem: 1) the usual back-propagation model, and
2) the unsupervised Projection Pursuit learning algorithm of Bienenstock, Cooper
& Munro (BCM). In the BCM theory, an alternative cost function is used 36 :

E = -{(s(n)i,,) 3/3 -[(n)i,,)2]/4 )

where V[ ] is the average over a suitable time interval of the enclosed quantity.
The s(n)iL are the values at the iI-th node in layer n, and y is an empirically
determined scale factor adjusted to keep the network from oscillating, ensures
good convergence, and preserves the units of the equation. Minimization of this
function favors directions of statistical skewness (i.e. directions where the
projected distribution is bi-modal), thus revealing the inherent structure in the

36 N. Intrator and L. N. Cooper, Objecti,'e Function Formulation of the BCM
Theory of Visual Cortical Plasticity: Statistical Connections, Stability Conditions,
Neural Networks, 5, 3-17 (1992).
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data. This approach is also used to introduce stability into the search process
through the dynamics of the quantity £ [(s(n)i02)]. In the BCM theory, "cells" are
typically coupled using lateral inhibition:

s (n)5i _-- fbn)iL - lk~iS i(n)i,,)

where a is an empirically determined "inhibition" factor, and the b(n)i;, are the
direct output values from the indicated layer. Coupling in this manner may be
used to remove redundancies in the weights of the various cells in the network.
The coupling also means that individual cells may now find directions which
may have either bi-modal or multi-modal projection distributions.

In the paper by Bachmann, Musman, Luong, and Schultz 37 a database of
some 4896 simulated ISAR presentations of 21 different ships was used; the
database was partitioned into three sets: one for training, one for cross-
validating during training, and one for evaluating generalization after training.
The best performance for the task of distinguishing simulated combatants from
simulated commercials was obtained by BCM, - 78%. Most striking, however,
was that in comparing 60 trials of this approach with 60 trials of the back
propagation model, the average rate of recognition of combatant ships for BCM
was -72%, whereas for back propagation it was -59%. These results were
obtained for classification of single frames of simulated ISAR; ongoing work is
exploring the use of extensions of the BCM model to obtain target classification
from multiple frames (Bachmann and Luong, 1993)38.

These and related network algorithms have also been used to extract small
signals buried in noise, as well as features of Jet Engine Modulation (JEM) signals
associated with radar back reflection.

4.2.7. Automatic ESM Systems

Automatic ESM systems have been successfully used in the Learning Vector

37 loc. cit.

38 loc. cit.
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Quantizer (LVQ) algorithm39 for the characterization of radar signals at NRL.
The LVQ algorithm is a major variant of the Self-Organizing or Topology-
Preserving Map algorithm of Teuvo Kohonen developed in the early 1980's for
speech recognition application. As implemented here, the algorithm acts as an
P.daptive clustering method operating in an unsupervised learning mode. The
algorithm uses for input a set of 15 unconventional pulse parameters (UCPPs).
Each parameter of the set is treated as a component of a 15-dimensional vector.

Conceptually, the LVQ algorithm is based upon closest matching between
a set of class vectors and the presented data vectors. The class vectors are
initialized randomly and are typically of a uniform small length near the
origin. Effectively, only the direction in space is randomized. The data vectors
may require some transformation or normalization as well. The normalized
data vectors are then presented sequentially to each of the class vectors.
Whichever class vector is closest as measured by the Euclidean distance (square
root of the sum of the squares of the vector component differences) "wins." The
winning class vector then has its components modified by the Kohonen learning
rule: the new class vector is moved toward the data vector by a fraction of the
difference between the old class vector and the data vector. This fraction is
known as the "learning rate" and can be related to the number of data vector
presentations required for complete learning.

39 T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag,
New York, (1984).
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One result of this study was that the optimum learning rate was found to
be related to the number of pulses in one to two radar beams. Each data vector
has an opportunity to modify any of the class vectors, but only the closest class
vector is modified. The result of this presentation of data is that certain class
vectors will "grow" in length much more than others, and the class vector
direction may change as well. Each one of the group of class vectors which is
"growing" eventually comes to rest in the centroid of a unique cloud of pulse
parameters identifiable with an emitter. If the data vectors are associated with
their closest class vector, these class vectors will then have sorted a set of data
vectors (radar pulses) into their respective classes (emitters).

U I U

PRF PLOT COMPONENTS OF
UCPPS

INDIVIDUAL PULSES OVER TIME

The above algorithm describes initial work with four major applications in
mind: (1) control of software bin parameter limits to sort emitters, thereby
reducing processing burdens, (2) control of hardware bin parameter limits in an
advanced signal processor developed under the 6.2 S&T block, (3) as an
"analyst's aid" in the manual analysis of radar collections, and (4) as an
automatic software-driven pulse deinterleaver in the front end of an automatic
emitter analysis system. All four applications have been demonstrated. Most
impressive is the last application which is capable of emulating experienced
human analysts to a high degree. When the automatic system and experienced
human analyst are given the same data set to classify, the classifications of
radar signatures typically match to within a few hundredths of a unit; a match
of under 10 units is considered to be close.
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The initial work in this area is soon to be published40 . It describes the
early results of a neural network which uses only the UCPP's. However, research
has progressed, and the algorithm has grown to take advantage of RF and pulse
repetition interval (PRI) characteristics as well as the UCPP's. These parameters
and the RF characteristics are used to form initial classes which are then merged
when necessary on the basis of similarity of PRI's. The resultant algorithm is
quite robust in that shape and density of the clusters have no effect on its
performance, and relative cluster separation has only small effects. This
algorithm now more resembles the Dynamic Vector Quantizer algorithm of
Franck Poirier4 l in that it uses measures of dispersion to dynamically create new
class vectors. This overcomes one of the shortcomings of the LVQ in that it must
have some upper limit of number of class vectors. Current plans envision this
algorithm as the central software element of a stand-alone automatic processing
and analysis system.

4.2.8. Generalized Probabilistic Neural Networks

Alternative methods of signal processing are important, particularly when
the background noise is not Gaussian (which is true in a surprising number of
cases). Methods of accounting for Gaussian noise are well understood, and
matched filters are often used in such cases.

There are significant opportunities to improve the detection of signals in
the presence non-Gaussian noise, and this field is not yet well understood.
Neural networks provide an opportunity to develop algorithms for this purpose.
The following algorithm has been shown to give 10-15 dB improvement in signal
recognition over methods which employ classical linear filters assuming

40 J.C. Sciortino and J.R. Sevick, ESM Applications for the Learning Vector
Quantizer Algorithm, NRL Memorandum Report #(TBD) under review at Branch level,
Naval Research Laboratory, Washington, DC. (1993).

41 F. Poirier, DVQ: Dynamic Vector Quantization - an Incremental LVQ,
pp 1333-36. in Proceedings of the International Conference on Artificial Neural
Networks (ICANN-91), Espoo, Finland 24-28 June 1991, edited by T. Kohonen, K.
Makisara, 0. Simula, and J. Kangas, Elsevier Science Publishers B.V. North Holland,
(1991).
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Gaussian noise. Further, these algorithms may be readily introduced with
parallel processors, providing additional speed for signal processing hardware.

4.2.8.1. Gram-Charlier Neural Network

This method is designated the Gram-Charlier Neural Network (GCNN) 4 2' 43.
A conditional density function g(xlk) is chosen to represent the statistical values
of the function being examined:

g(xlk) = [(1/(2 ,o2)] 1ýexp[-(x) 2/(2o 2)][1--jWjkCKj(x) ]

where Hj(x) is the j-th Hermite polynomial, x is the value of a measured

function, and k is the class of a specified signal. The selection of Hermite
polynomials forms a complete orthogonal set; the coefficients Wjk are
determined by the learning algorithm introduced. For a class consisting entirely
of Gaussian noise, all
coefficients Wjk are zero. This
function thus serves as a
modified Gaussian with which
to recognize a given class k for Noise only
a given signal based on the SgrCl plus noise
class of weights to which it 0 %
belongs. The classification is 0.
based on the weights which
most closely resemble those
obtained by the training X

procedure.

The training procedure of the GCNN is accomplished in a manner
resembling a modified Kohonen learning scheme. Initially, a pretraining
procedure utilizes experimentally determined density functions for each class k
to calculate the coefficients Wjk(training); Classical techniques are used to

42 M. W. Kim and M. Arozullah, Generalized Probabilistic Neural Network-
Based Classifiers, IEEE Joint Conference on Neural Networks, Baltimore, MD, June
(1992).

43 M. W. Kim, Neural Network-Based Optimum Target Detection in Non-
Gaussian Noise Environments, Ph. D. Thesis, Catholic University of America (1992).
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determine the coefficients of a complete orthogonal set. A set of random vectors
is chosen as the initial set of Wjk. These vectors are first compared with the
values of wjk(training):

The minimum,

MIN [lj(wjk(taining) - wjk)2], k = 1,2,...n,

is found for each random vector of length n having a component
index j. For the minimum distance found, say this is for k = g, the
existing values of Wjk (Wjk(old)) are updated using the following
algorithm:

wig(new) = Wig(old) + CC(Wjg(training) - wig(old)), j = 1,2 .... n.

The variable ot is chosen empirically to optimize the overall rate of
learning.

The above steps are repeated for each class of data introduced.

Once the network is trained with the training set, an unknown signal is
introduced by finding the minimum distance with the trained vectors Wjk. The
minimum distance is then a measure of the classification for the unknown
vector. The value of wjk may be updated in the same manner as that in the
training set, thus introducing variations in signal characteristics with time.

4.2.8.2. Generalized Probabilistic Neural Networks with Parzen's
Windowing Technique

A further refinement to GCNN has been examined, referred to as the
Generalized Probabilistic Neural Networks (GPNN). The basis functions formed in
this technique are essentially linear combinations of the GCNN functions, using
an approach commonly referred to as the Parzen's windowing technique. The
overall conditional density function for this approach is

gp(xlk) = (1/N)-ig(x-xilk).

42



NRL PROGRAMS RELATED TO NEURAL NETWORKS

Tests using this function appear to give improved agreement with classification
problems of the type described above.

These algorithms have been tested against sample radar signals containing
Gaussian and non-Gaussian noise (such as Weibull noise, a common
component) and compared with alternative methods such as a Bayesian
approach and the usual back propagation methods. They appear to
outperform these other techniques by a significant margin.

4.2.9. Analog VLSI Artificial Neural Network Research

Algorithm and analog circuit research is currently being performed for
three types of analog VLSI artificial neural network analog signal processing
circuits. These circuit types include: 1) high frequency continuous-time
adaptive learning circuits, 2) programmable analog vector-matrix multiplier
circuits, and 3) adaptive learning circuits for infrared detector non-uniformity
correction.

The high frequency
continuous-time adaptive +
learning circuit 4 4 uses
continuous-tim e analog
multiplier and integrator circuits
to implement a class of gradient
decent learning algorithms.
Examples of the gradient decent
learning algorithms which may
be implemented by the
continuous-time adaptive "--"[
learning circuits include the
Hebbian, delta-learning rule, and least-mean-square (LMS) learning algorithms
with the general form

dwij/dt = -ywij + aai(bj -

44 F. J. Kub, E.W. Justh, F. M. Long, and K. K. Moon, High Frequency Adaptive
Learning Element, GOMAC Conference, Las Vegas (1992).
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where wij is the weight, y and a are constants, ai is the input, bj is the output of
the linear combiner (Yiaiwij), and ;j is the desired value. These circuits have
been fabricated using a CMOS foundry process and have achieved 32 dB
cancellation of a CW signal at 80 MHz with adaptation times as short as 5 gS.
This frequency of operation is greater than two orders-of-magnitude higher than
any previous analog circuit implementation. Also, programmable multiple
notch filters in which each of the notches has less than 1% notch width have
also been demonstrated. The high-frequency adaptive learning circuits may
potentially be applied to cancellation of collocated signals in spread spectrum
systems, multiple programmable notches for EW systems, adaptive arrays for
radar systems, and both passive and active sonar systems. An ONR sponsor
contract program is planned to begin in FY94 to investigate the potential
performance levels which may be achieved using the continuous-time adaptive
circuit approach. The CMOS implementation requires an area of 48 gim x 1.34
mm per learning circuit, allowing up to 200 parallel inputs.

A second class of analog VLSI circuits now under investigation is the
programmable analog vector-matrix multiplier circuit 4 5. The circuits under
development have the potential to perform high speed vector-matrix multiply
operations in a small volume with low power dissipation. NRL has designed and
fabricated both 32x32 and 128x64 programmable analog vector-matrix
multiplier circuits. The 32x32 vector-matrix multiplier circuit has
demonstrated full functional capability, while the 128x64 circuit is still under
development. The 128x64 vector-matrix multiplier circuit has the potential to
perform three billion connections/second. The time required to compute an
output vector is approximately 3 p.S. The accuracy of these devices approaches
seven bits. Potential uses of the 128x64 vector-matrix multiplier array to
perform high rate two-dimensional Hartley and Fourier transform operations
have also been investigated.

The current research effort to provide infrared detectors with non-
uniformity correction involves both an investigation of learning algorithms and
potential circuit approaches. The adaptive learning method is the method of
steepest descent and its well known special case, the LMS learning method. In
the LMS algorithm, the weights are updated proportionally to the product of

45 F. J. Kub, K. K. Moon, I. A. Mack, and F. M. Long, Programmable Analog
Vector-Matrix Multipliers, IEEE Journal of Solid-State Circuits, 25, 207-213, (1990).
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respective pixel input and error. By considering only the signs of these factors,
various learning method alternatives to the LMS algorithm may be derived.
These include the clipped, pilot and zero-forcing algorithms, depending on
which factor the sign operation is performed. The trade-offs of these algorithms
with those of the LMS algorithm include stability, learning rate, and ease of
implementation. The primary advantage of these algorithms is that they allow
the use of comparator circuits rather than analog multiplier circuits; this
significantly simplifies the analog weight learning circuitry. These algorithms
are also compatible with analog integrator implementations which provide long
integrator time constants. Simulations have shown good non-uniformity
correction for these learning algorithms as well as the LMS when stimulated by a
point-source corrupted by random gain and offset noise. The study will
continue by modeling the non-idealities associated with circuit implementation
of learning algorithms. The neural network correction circuits will implement
an appropriate algorithm based on various trade-off issues.

4.2.10. Optical Cellular Neural Network

The Center for Bio/Molecular Science and Engineering at NRL has
demonstrated the ability to grow neurons in designated high-resolution
patterns. This is accomplished using a photochemical process for modifying the
substrate on which they grow, and represents an advantage towards
investigating (and perhaps utilizing) biological neural networks and their
behavior. Among other questions to be pursued by this research include: 1) How
do the neurons form synapses? 2) Can the presence of toxins be sensed reliably
and inexpensively with such biological networks? 3) Can optical fluorescence of
such electrically active cells be used for signal transduction and processing?

As an initial investigation towards that end, NRL research has designed
and tested an autonulling DC bridge (ADCB) that is able to detect and amplify
picoamp/microvolt signals from nerve cells. A U.S. Patent disclosure for this
technology has been filed. Signal filtering through on-site microelectronic
processors provides enhanced signals. The ADCB has also been used to detect
optical signals; it was then configured in an interconnected optical cellular
neural network (OCNN) that can transduce spatial optical signals.
Optoelectronics will be fabricated into substrates on which neurons are directly
patterned; these devices will also be tested using a projection scheme with the
OCNN as well as an electrically sensitive array for spatial detection of
electrochemical signals.
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The nearest-neighbor interconnected neural network utilizing the
autonulling bridge as the unit transduction "cell" has been implemented at NRL.
An integral feedback system is used to establish a stable null across the bridge;
the feedback voltage, V, controls a voltage controlled resistance (VCR) used to
correlate V to the input signal being transduced. The stand-alone bridge has
been shown to have an asymptotically stable solution. The use of the
autonulling bridge as the transducing element has two significant advantages:
1) common noise is reduced by a differential measurement taken across the
bridge nodes, and 2) integral feedback reduces high frequency noise on each
node. Each of the bridge integrators will have outputs that are governed by the
differential equation

dVij/dt = A[Vjj- V2,ij(Vij)]

where V1*j~ and V2. i
correspond to node voltages I
and 2, respectively, at Vda

position ij in an array.
Signals from an array of

transducers suffer from -A

spatial noise related to o m V= V Z 4 S•

thermal effects on the
transducers and local noise at
each transduction point. The
n e a r e s t -n e i g h b o r
interconnection emulates a cellular neural network that enables spatial
integration. It allows the weighted interconnection of the feedback signals to
generate the voltage required to balance each bridge in the network:

Vr.ij = 7-k.1 WkIVi+kj+l

where Wkl are the interconnection weights over each of the neighborhoods. The
weights of the interconnections determine the type of spatial filtering that is
carried out by the network. Each of the bridges will be at null, so the signal Vr,,ij
that controls the VCR of each bridge will correspond to the input signal on that
bridge, but the signal Vij will be the signal corresponding to a spatially filtered
output from that point in the array.

46



NRL PROGRAMS RELATED TO NEURAL NETWORKS

Conventional techniques for filtering spatial noise was previously done on
data after it was collected and stored using a deconvolution operator. The
weighted interconnection of the bridge feedback signals generates a two-
dimensional pre-processed image. The technology used in this network is
compatible with microfabrication and therefore offers itself to miniaturized
operation. This configuration is being investigated for use in three situations: 1)
for two-dimensional optical transduction that can either be mounted under a
substrate properly passivated for cellular deposition; 2) as a focal plane array
initially designed to mount on a microscope with patterned neurons registered
and focussed onto it; or 3) signals transduced from substrate-based electrodes as
the input method in which case a two-dimensional electrical image will be
transduced.

The stability of the network has been verified using standard perturbation
theory as well as by virtue of a global Lyapunov function. The system equations
for the OCNN are similar to a general formulation developed by Cohen and
Grossberg of the state equation and associated Lyapunov function of locally
interconnected neural networks. The state equations discussed can also be
applied to many other paradigms of neural networks (e.g., content addressable
memory, short term memory) implying that the interconnected ADCB offers
itself to other applications besides the OCNN. Other schemes besides linear
weighted sums of the neighbor signals are also feasible yielding a variety of
spatial filtering algorithms which may be incorporated into the system.
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5. ADVANTAGES AND LIMITATIONS
OF NEURAL NETWORKS

The "hype" evident in some of the neural network community has tended
to obscure some of the true merits as well as the limitations of neural networks.
Further, although many of the methods reported by the neural network
community are based on sound procedures developed years earlier by the signal
processing community, signal processing concepts are often not acknowledged
by the neural network community. This sense has been captured in an
interesting statement 46 :

"In one sense neural networks' are little more than non-linear
regression and allied optimization methods. However, they do have
a methodology of their own, which has been developed very rapidly
by workers from very diverse backgrounds, most with little or no
experience nor training in data analysis. Their pervasiveness means
that they can not be ignored. In one way their success is a warning
to statisticians who have worked in a simply-structured linear world
for too long."

A succinct discussion can guide future attempts by new researchers.
Comparison studies are most appropriate; in many cases alternative approaches
to solving selected problems have been discussed4 7 . Advantages demonstrate
utility under the appropriate circumstances. Some of these include

1) Recognition of new relationships - Using methods such as back
propagation and other optimization techniques, a number of programs
have been shown to give results superior to those obtained from standard
signal processing and statistical analyses.

2) High speed treatment of data - Due to the inherent parallel
architecture associated with neural network algorithms, it is almost
axiomatic tb.t they are suitable for new parallel computational tools now

46 B. D. Ripley, Statistical Aspects of Neural Networks, to appear in
proceedings of lectures for Seminaire Europeen de Statistique, Sandbjerg, Denmark,
25-30 April (1992).

47 J. P. Ignizio, James, Alternatives to Neural Networks, 2nd Government NN
Applications Workshop, 10-12 September (1991).
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becoming available. Once networks have been "trained," they provide
decision tools which are computationally efficient, particularly when used
with parallel computer implementation. This provides enhanced speed of
data treatment, and should be an advantage in appropriate
circumstances.

3) Fault tolerance - The graceful degradation of neural networks under
failure of digital memories containing the weights has been noted in some
references. This property may, as an alternative, be introduced through
conventional techniques such as redundancy. A large number of neural
network algorithms require the equivalent of redundancy since a large
memory is required to successfully recognize selected patterns or to
properly classify signals. Thus, the trade-offs between redundancy with
conventional approaches and graceful degradation observed for neural
networks will be closely examined during the next few years.

Some of the limitations inherent in the neural network approach include

1) Learning many patterns and "behavior" is difficult, taking large
quantities of machine time to obtain tolerable recognition or classification
levels. "Experimentation" or trial and error is often necessary to obtain
useful recognition behavior. Frequently, large numbers of trials are
required for learning. The possibility of converging on false or local
minima is a significant problem in high-dimensional space.

2) The interconnection density for large neural network problems
requiring global connections is too high for implementation by VLSI
technology. This places some limitations on the flexibility of the
interconnects and hardware designs possible. Thus, artificial networks
(similar to those on biological systems) are restricted to perform
computations with local interconnections.

3) Hardware implementation of neural network algorithms may perform
in an unstable and chaotic mode, giving unexpected problems not readily
expected from experience with traditional digital software.

4) In comparison with memory requirements for standard digital
techniques, neural networks require far more memory. For Hopfield or
other pattern recognition algorithms, the memory capacity is typically on
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the order of O.15n 2 , where n is the number of memory bits required to
remember n bits of a pattern. In contrast, a digital system would have a
capacity of n2 bits.

5) Neural networks are limited to single measures of classification fit and
do not deal effectively with side conditions; these must be introduced
artificially as special algorithmic approaches, if indeed, they can be
addressed.

6) In many cases, quantitative performance measures for comparing
neural networks against alternative approaches are lacking and remain to
be developed.
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APPENDIX I: DEFINITIONS AND
TERMS

ACTIVATION FUNCTION - A nonlinear transformation performed at each output
of a specified "neuron" prior to connection with another level of neurons.
Typical transformations are

1/(l+e-V.) or tanh(cxVz)

where V. is the output "voltage" or value of a neuron. The hard limit of the
sigmoid (where the value is 1 if V. > 0.5 and is 0 if Vo < 0.5) is frequently used to
simulate the "firing" or absence of "firing" of a neuron.

ADAPTIVE RESONANCE THEORY (ART) - Proposed by Grossberg, this network
switches modes between the learning mode and the stable (classification) mode.
It uses nonlinear activation functions and feedback. This type of network
activates a new internal node whenever an input pattern is sufficiently different
from stored patterns.

BACK PROPAGATION - The process of "training" networks by comparing the
output of a network to a desired value and feeding a function of the error into
the weights to improve the desired behavior of the network.

FEATURE SPACE - The n-dimensional space conceptually used to represent the
various components of a signal or object.

FEEDFORWARD NETWORKS - A network which has no feedback; these may be
contrasted with Recurrent Networks.

GABOR FUNCTION - A sinusoidally-modulated Gaussian function used to filter
image fields; particularly useful for detection motion in successive images.

HEBBIAN LEARNING - A process by which differences between network output and
desired output are used to modify the weights in order to obtain improved
agreement between network output and desired values.
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HIGHER-ORDER PROCESSING UNIT' - A network in which the coupling is through
higher order coefficients, such as

y = f(F-jwjxj + F-j,k WjkXjXk + Yj,k,l Wjkl XjXkXl + -.. )

where fO is the nonlinear activation function.

HOPFIELD NETWORK - A network using an iterative algorithm in which the
weights are selected from (1,0) patterns, modified for improved "learning;" a
"hard-limiting activation function" (1 or 0 for the "neuron" values) is used.

KOHONEN SELF-ORGANIZING NETWORK - A network using unsupervised learning
algorithms to extract classes or clusters of information.

LVQ - LEARNING VECTOR QUANTIZER - A Kohonen-type of network starting with a
known set of classification vectors; updating is based on classification tests with
data.

LYAPUNOV FUNCTION - A "cost" function that decreases (or stays constant) in
time as the network evolves. A property of dynamics for the Hopfield Network.

PERCEPTRON - An early artificial neural network consisting of a linear
transformation from input to output; this transformation may or may not be
followed by an operation such as an "activation function." Linear perceptrons
are not even able to solve simple nonlinear problems such as the XOR function
and were hence not pursued until the process of implementing non-linear
transformations on the product of linear transformations was introduced. The
term perceptron is used today to include both linear and nonlinear networks
consisting of one or more linear transformation.

RADIAL BASIS FUNCTION - A circle chosen to represent a characteristic value in
feature space (used with Reduced Coulomb Energy (RCE) networks). Typically, a
classification is "taught" through input features involving independent variables
and a known classification. This "maps" feature space according to specific

a Y. Shin and J. Ghosh, The Pi-sigma Network: An Efficient Higher-Order
Neural Network for Pattern Classification and Function Approximation, International
Joint Conference on Neural Networks, Seattle, WA, July 8-12, pp. 1-13-118, (1991).

52



APPENDIX I: DEFINITIONS AND TERMS

classifications learned. Conflict among subsequent radial basis functions
introduced is resolved by adjusting the radius of the conflicting functions.

REDUCED COULOMB ENERGY (RCE) - A classifier using radial basis functions or
"hyperspheres" to classify feature space. It can form arbitrary decision regions
and has been used extensively for classification problems.

RECURRENT NETWORK - A network which incorporates some form of feedback
from output "neurons" to input neurons; distinctly different from Feedforward
Networks.

SELF-ORGANIZING NEURAL NETWORK - A network in which the weights are
adjusted through an algorithm which makes use of data to be classified. The
process of classification occurs simultaneously with the adjustment of the
weights. The Kohonen network is an example of a self-organizing neural
network.

SUPERVISED NEURAL NETWORK- A network in which both input and output data
are known, and the objective is to "train" the algorithm to replicate the patterns
inherent in the data. Hopfield networks or multilayered networks are examples
of supervised neural networks. See Unsupervised Neural Network.

UNSUPERVISED NEURAL NETWORK - A network in which the input data are
known, and it is desired to obtain relationships extant in this data. Kohonen
networks and ARTnetworks are examples of unsupervised networks. See
Supervised Neural Network.

WIDROW-HOFF ALGORITHM - A method of updating the weights by considering

each existing pattern and adding a fraction of each new (and properly
classified) pattern to the appropriate existing weights to "learn" the appropriate
pattern for correct classification.
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APPENDIX II: THE STANDARD
LEAST SQUARES APPROACH

The following algorithm is a tried and true method of using the least
squares approach to obtain a best fit between experimental data and an
assumed function. It has been used for decades and is a powerful technique for
many problems. Many "standard" techniques seem to have been overlooked by
researchers introduced to the methods of neural networks. This algorithm is
introduced here as a convenient reminder for those interested in pursuing
neural networks.

This method may be generalized to n-dimensional space, to nonlinear
functions, and to still more general problems such as image recognition. This
technique is advantageous in that it searches for extrema in a much lower
dimensional space than do most neural network approaches. It also has
disadvantages: 1) a reasonably close approximation to the function being sought
is necessary for the iterative process to converge; 2) it may be more time-
consuming than alternative algorithms, particularly when the number of
variables becomes large (matrix inversion scales as n3).

Given a function fi (the subscript i denotes the i-th point in space; the
function f is the same for all i)

Zi€ = fi(al,a 2,... axli,X2i,...Xmi), i = 1,2,...n

where zic is the i-th calculated value (n parameters), the function consists of
variables a j and m independent variables xki, k=1,...m; this function
approximates a set of observed values zi°. The problem is to adjust the values of
the variables aj to obtain the best fit to the experimentally observed values zi0

and the calculated values zic using the criterion of minimizing the value of the
squared differences (least squares):

MIN [y.(zi. -4°)2].

The derivatives of the calculated points with respect to each of the
variables are defined as

dij = Jfi/aaj = [Mf(al,a2 .... an,xIi,x2i .... Xmi)/aajI
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where dij is the derivative of the function at the i-th point in space with respect
to the j-th parameter. Insert into the expression to be minimized the first two
terms of a Taylor's series expansion, and obtain the extremum by setting the
derivative to zero (this approximation is exact if higher order terms of the
Taylor's expansion do not exist, true if the function is first order in the
parameters aj):

(a/aak)Ei[zic + EjdijAaj - zio]2 = 0

Taking the derivative and shifting the order of the terms in brackets gives

21i[1jdijAaj + zic - zi°)]dik = 0

Multiply this expression through by dik; drop the 2, and arrange the terms for

matrix multiplication by transposing where appropriate and commuting:

li[dtki Xj dijAaj - dtki(zio - zic)]- 0

where Dt is the transpose of the matrix D (capital bold letters represent the full
matrix; individual matrix elements are in lower case with subscripts).

Defining (Azi) = (zi° - zic), in terms of matrices, this equation becomes

DtD(AA) - Dt(AZ) = 0

Solving for (AA) (assuming an inverse exists) gives

(AA) = (DtD)"l Dt(AZ).

This prescription gives an efficient adjustment of the parameters, particularly if
the function behavior is nearly quadratic in the function space spanned. This
sequence may be iterated to self-consistency by inserting the new set of aj's and
repeating the sequence.
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APPENDIX III. NEURAL NETWORK
OPTIMIZATION METHODS

A number of methods are currently used for optimizing complex
nonlinear functions in n-dimensional space. An appropriate statement
regarding these alternatives appears in a recent workshop [Footnote 47]:

"In many cases, these new tools have resulted in extremely
interesting, and sometimes highly effective approaches - for the
solution of important problem types that, for the most part, have
resisted solution by more conventional techniques. And thus we
certainly have no argument whatsoever as to the need for, and the
importance of further research in these areas. However, in other
instances, we have noted that Al tools have been, quite simply,
inappropriately applied - most often out of ignorance of the
existence of more suitable alternatives. And this includes a number
of instances of the inappropriate recommendation for, and use of,
neural networks."

Several useful nonlinear optimization functions are discussed in this
appendix to provide a reference. The discussion here has been restricted to
feedforward adaptive networks. The problem of "learning" is that of
optimization or minimization of an objective function E(w):

E(w) = 1i[zinn(w) - zi]2

where the sum is over all training sets (i = 1.. .m) and the inner difference is
between the network output (znn) and the required output observable (zO). E(w),
of course, is a function of the weights (w), which are to be found from the
minimization procedure. Typical functions employed at each node of the
network, as seen in Section 2, include hyperbolic tangents, gaussians, linear
ramps, etc. As such, this minimization problem belongs, in the terminology of
theoretical computer science, to the class of "NP-complete" problems; that is, to
find the absolute minimum of this objective function is more difficult than for a
polynomial (of order N) hard. The computer time required to find the solution
scales more poorly than a polynomial of degree N. As such, neural network
learning belongs to the same class as the classic "travelling salesman" problem.
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This issue is revisited at the end of this appendix, but several well-established
methods exist to train neural networks:

1) Back Propagation

The "standard" optimization method used in the neural network
community is back propagation. This method is simply a reformulation of the
steepest descent algorithm; as such, it is an inefficient optimization method
even though it is an O(N) (order N) method. For reasons that this is the case, see
Numerical Recipesb. The method is guaranteed (in the limit of small step size -
larger step sizes may cause divergences or oscillations) to move the set of weights
to the nearest minimum unless so-called "momentum" (i.e. hill-climbing) terms
are added to the algorithm to ensure convergence to a global minimum.

2) Newton-Raphson

Another method is the non-linear version of the Newton-Raphson method;
this is usually used iteratively to find the solution to sets of linear equations. A
matrix of second derivatives (derivatives of the objective function with respect
to weights i and j) is required. Given a starting guess at the weights, the
procedure includes iterative convergence on the nearest minimum using
gradient information:

Wn+1 ` Wn - Hn-lDn

where the subscript n implies iteration number, H is the Hessian (second
derivative) matrix, W is the vector of weights, and D is the vector of first
derivatives. Thus, both back propagation and the Newton-Raphson method
gexi.,rally converge on a local minimum. The disadvantage with the latter is
that, although the number of steps required to get to the minimum is, in
principle, less than for back propagation, the nonlinear Newton-Raphson
method requires a matrix inversion - an O(N 3) procedure. The second more
practical issue is that, in neural networks of any complexity, the Hessian is, in
general, pathological. The matrix elements vary over many orders of

b W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes (The Art of Scientific Computing), Cambridge University Press, NY (1986).
ISBN 0 521 3081 i 9
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magnitude, and the matrices are ill-conditioned. Numerical precision is often
an issue. Put in physical terms, this means that the valleys in the "energy"
landscape are very steep, and any small imprecision in their description leads
to errors in attempting to follow the valley floor to the minimum.

Even quasiNewton techniques, such as the popular Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) methodc, which does not require inverting the
Hessian matrix, may not perform satisfactorily due to the usually huge number
of variables (weights).

3) Conjugate Gradient

Related to the Newton-Raphson method but computationally more
efficient is the conjugate gradient methodd [also Footnote b]. Here, as above,
the objective function E(w) is approximated by a quadratic form in the weights;
but because of a mathematical "trick" (see reference b) only gradient
information, not second derivative information, is needed. Migration from an
assumed point in function space initially proceeds along the negative of the
gradient of the function. A series of line minimizations are performed along so-
called "conjugate directions," and the total minimization is performed in O(N 2 )
operations. Direct calculation of the Hessian is bypassed. Again, the method
descends to a minimum near the starting point. Many different starting points
are frequently attempted to find a good minimum. The method is probably
more stable than the Newton-Raphson method above because direct matrix
manipulation is not performed.

4) Simulated Annealing

Given the foregoing, it is clear that some "intelligence" is needed in the
choice of where to focus attention in the configuration space of all the weights.
This may be done via the method of simulated annealing. Here, the analogy of
minimization may be compared with cooling a liquid until it crystallizes. This

c P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, NY (1981). NRL Library QA 402.5 .G54

d C. Charalambous, Conjugate gradient algorithm for efficient training of
artificial neural netwo-ks, IEE Proceedings 139, 301-311 (1992).
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is analogous to mathematically simulating a high-energy disorded system to a
cooler ordered state. Thus, since the minimization problem is analogous to a
thermodynamic problem, standard techniques of numerical statistical
mechanics may then be applied. These techniques include Monte Carlo or
molecular dynamics. When Monte Carlo techniques are employed, the system
of weights is assigned a "temperature." Small changes in weights are made, the
objective function E(w) is evaluated, and the change is adjusted according to the
Boltzmann factor, e-AE/kT. In the case of molecular dynamics, the weights are
assigned a fictitious velocity and are updated in time following the Hamiltonian
(comprising now the sum of the "potential energy" (i.e. the objective function
E(w)) and the fictitious kinetic energy) of the system; this uses standard finite
step size integration techniques. In classical statistical mechanics, the kinetic
energy is trivially related to the temperature of the system. In both methods,
the system is slowly cooled to zero temperature. This is the so-called annealing
schedule. Clearly, the longer the annealing schedule, the more likely is the
system to find the absolute minimum, or at least a good, stable minimum. The
inclusion of a fictitious temperature allows the system to float over hills in the
"energy" landscape. Both schemes will scale as O(N). In the Monte Carlo
implementation, forces (i.e. derivatives of the objective function) are not
required; in the molecular dynamics implementation they are. The advantage
of the latter is that the use of forces provides a more intelligent way of exploring
the energy landscape. A typical procedure would be to try different annealing
schedules from different starting points and use the best final set of weights after
the quenches are completed.

5) Genetic Algorithms

Another exploitation of nature's optimization techniques is the genetic
algorithme.f Here the neural network problem of finding extrema resembles
natural evolution: a population of possible networks exists, and the rules of
natural selection are applied to reproduction, growth, death, etc. The
population comprises p different networks, each with its own set of weights and
each with its own value for the objective function E(w). This population is

e D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning; Addison Wesley (1989).

f L. Davis, Handbook of Genetic Algorithms; Van Nostrand Reinhold (1991).
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ranked according to a degree of "fitness" according to its objective function.
Small values of the objective function are "good." Members of this population
are then allowed to mate with one another. Traits, represented by a weight or
set of weights within one network, are allowed to exchange with those in
another. Networks are chosen at random for the mating process, but the choice
is weighted so that the "better" networks mate with one another. Children are
then produced and added to the list; the "worst" members of the population are
"killed off" by deletion from the list. The population size P is kept fixed. Other
genetic "operators" are possible: mutation, direct reproduction with no exchange
of traits, and so on. After application of these operators, the new list is reranked
and the whole process is reapplied.

Historically, genetic algorithms have been applied to binary strings,
whereupon a more direct analogy with genes represents the variables in a given
problem. But the same ideas may be equally applied to floating point
information and even strings of symbols. The population evolves in such a way
that it finds the most important ("best") parts of configuration space. Mutation
and cross-over (of trait) operators allow the members of the population to
migrate across distant parts of the objective function landscape. Movements
across "mountains" are then quite possible. "Intelligence" is injected into the
solution since genetic operators ensure that the population evolves toward
"good" solutions without deleterious effects from forces and/or "mountains" in
the objective landscape.

The problem with genetic algorithms is that, although they are very
powerful, they are NOT a "black box." Experimentation is necessary with the
frequency at which operators are applied, the types of operators (in principle,
they could include gradient information also), the way in which "good"
members of the population are selected for mating, how many weights (traits)
may be exchanged or mutated, and how new children are inserted into the
population. Nevertheless, this method has been applied to neural networks and
is found to be superior to most of the foregoing methods for some problems.

It is possible to use a genetic algorithm to "1;nd a "good" optimum for the
problem, and then use a conjugate gradient a -orithm to obtain the true
optimum. In fact, this strategy has been demonstrated to work well. Lastly,
genetic operators may also be used to design a network: the topology of the
network itself may be a variable in the problem. Nodes may be added or
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subtracted according to genetic "rules" in order to improve the degree of fitness
of the population. This is an ongoing area of research; initial indications are
that this may be a fruitful avenue to pursue.

6) Diffusion Equation Method

The existence of multiple minima represents a challenge in obtaining a
global minimum for any of the above methods. Convergence and testing of
many minima represent time consuming operations. A method of improving
the search for a global minimum using a relatively simple modification of the
function under examination has been introducedS. By adding increments of the
second derivative of the function under investigation, a number of the local
minima disappear. Shallow minima disappear before deep ones. Searching for
minima in this deformed function is much easier, since there are many fewer
minima. Once the global minimum has been located for the modified function,
the reverse operation is performed to regenerate the original function while
simultaneously following the position of the global minimum to its new
location. This procedure appears to be an effective way to determine the
location of global minima in complex functions.

7) Summary

There are other optimization schemes reported in the literature which
may be applied to neural network learning, methods for smoothing out
mountains in the "energy" landscape or for constructing simplexes [Footnote b]
around an estimated minimum, but the examples given above are
representative and illustrative of the inherent difficulty of the problem. Other
schemes which borrow from nature might be envisaged, such as designing the
problem to resemble the manner in which insects find food. In this case,
"swarms" of networks could migrate about in the energy landscape. Once
"food" is located (i.e. a low value for the objective function), then a swarm
would convene in this region and continue the search. The "swarm" operators
here look quite similar to genetic operators; similar success is found in locating
the minimum of the objective function.

q L. Piela, J. Kostrowicki, and H. A. Scherga, The Multiple-Minima Problem
in the Conformational Analysis of Molecules. Deformation of the Potential Energy
Hypersurface by the Diffusion Equation, J. Phys. Chem. 93, 3339-3346 (1989).
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Network learning constitutes a difficult nonlinear problem. However, the
methods described above (d and e in particular) may be introduced with
significant success, especially when coupled with a final conjugate gradient
minimization. Indeed, these methods have been used to solve the "travelling
salesman" problem. An important conclusion is that, although an absolute
minimum is not guaranteed, there exist "good" solutions in the "energy"
landscape which yield acceptable and robust solutions for many problems.
Indeed, there is a growing body of work in the theoretical computer science
literature which supports the notion that the degree of difficulty associated with
"NP-complete" problems is associated with the pathological parts of the
configuration space of the problem, which may just be a vanishingly small part
of the overall configuration space. In other words, for many problems, the "not
quite so good" solutions may not be that bad and, to the contrary, may have
significant utility.
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